sábado, 15 de junio de 2013

A la caza de la Auroras Boreales (I)

Primera parte: ¿Qué son?
Las auroras boreales son, sin duda, uno de los espectáculos más fascinantes que la naturaleza nos puede ofrecer, pero desgraciadamente no son fáciles de ver y depende de muchos factores una buena observación. Una aurora polar es un fenómeno celeste luminiscente visible en el cielo nocturno, normalmente en latitudes altas. Este fenómeno fue llamado "Aurora Borealis", nombre dado por el científico francés Pierre Gassendi en el siglo XVII. Aurora, nombre de la diosa romana del amanecer y que en latín viene a significar "alba del norte", puede aparecer como un resplandor en el horizonte septentrional como si el Sol estuviera saliendo por la dirección equivocada. Como en el hemisferio sur ocurre el mismo fenómeno con el resplandor proveniente del sur, la “Aurora Australis”, los científicos prefieren llamarle simplemente "Aurora Polar".
Las auroras son conocidas por el hombre desde tiempo inmemorial. Ya en el año 37 después de Cristo, los romanos vieron lo que pensaron era un terrible incendio reflejado en el cielo. El emperador Tiberio envió un ejército a Ostia para ayudar a las víctimas del fuego. Lo que realmente estaban viendo era una gran aurora roja. Este impresionante fenómeno está profundamente arraigado en la mitología de muchas culturas. Antiguamente las también conocidas como “luces del norte” (northern lights en inglés), eran vistas como advertencias de desastres y otras calamidades. En el norte de Europa se creía que estas luces eran los reflejos emitidos por los grandes bancos de arenque en el cielo. También se referían a ellas como "los incendios que rodean los bordes norte y sur del mundo". En Finlandia se les denomina “revontulet”, que podía traducirse como “los fuegos del zorro”. Según la leyenda, los zorros hechos de fuego viven en Laponia, y las auroras son producidas por las chispas lanzadas a la atmósfera por sus colas. El pueblo sami, mayoritario en toda Laponia, cree que se debe tener especial cuidado y tranquilidad cuando se observan las luces del norte, llamadas “guovssahasat” en idioma sami septentrional, ya que es peligroso burlarse, cantar o reírse pues esta actitud puede hacer que las auroras desciendan sobre el burlador y lo maten. Para los indios algonquinos de Canadá y Estados Unidos las luces son sus antepasados bailando alrededor de un fuego ceremonial. La tradicional del pueblo inuit de Alaska cuenta que los movimientos ondulados de las auroras son sus antepasados. Creen que son los familiares y amigos que se han ido al cielo y marchan o bailar para que la gente les recuerde. Más recientemente los buscadores de oro durante la famosa “fiebre del oro” del Klondike de finales del siglo XIX, creían que las luces del norte eran el reflejo de la veta madre de todo el dorado metal. 
Pero no fue hasta finales del siglo XIX cuando el científico noruego Kristian Birkeland sugirió que las luces del norte eran resultado de la interacción entre las partículas procedentes del Sol y el campo magnético de la Tierra. Organizó varias expediciones al extremo norte de Noruega estableciendo estaciones de observación para recoger datos de las auroras y de la magnetosfera. La confirmación de sus teorías tuvo que esperar a la llegada de la era espacial y a que los satélites pudieran explorar nuestro campo magnético.


Cómo se producen las auroras boreales
Nuestra atmósfera nos separa del hostil y mortal espacio exterior. Está  definida en capas separadas según las características de cada altitud, en particular los cambios de temperatura con la altura. La magnetosfera es la más externa y la más extensa de las capas de esta “piel de cebolla” que es nuestra atmosfera. Curiosamente su origen hay que buscarlo en el interior de nuestro planeta. El continuo giro del hierro fundido del núcleo terrestre crea un imán gigante que es el responsable del campo magnético terrestre. Las líneas de este campo se extienden hacia el espacio exterior más allá de nuestra atmósfera. Esta funda protectora, que nos preserva de las peligrosas partículas de alta energía procedentes del viento solar, no es exactamente esférica. El viento solar empuja a la magnetosfera y la deforma de modo que en lugar de un haz uniforme de líneas de campo magnético, como las que mostraría un imán imaginario colocado en dirección norte-sur en el interior de la Tierra, lo que se obtiene es una estructura alargada con forma de lagrima o cometa con una larga cola en la dirección opuesta al Sol. Nuestro campo magnético es, entre otras causas, responsable de la formación de los misterios cinturones de Van Allen, dos regiones gigantescas en forma de toroide que rodean la Tierra y dénsamente pobladas de electrones y protones de alta energía que se mueven en espiral entre los polos magnéticos del planeta. Se extienden hasta los 60.000 kilómetros.
     Durante los máximos solares nuestro campo magnético, habituado a desviar el viento solar, recibe de pronto una onda de choque altamente energética y no da abasto distorsionando y cambiando la magnetosfera de la Tierra. Las líneas de campo magnetosfera pueden estirarse y romperse. La mayoría de las partículas son desviadas, aunque algunas llegan a entrar en las capas internas del campo magnético y son arrastradas hacia los polos siguiendo las líneas de fuerza. Allí donde nuestra magnetosfera es más débil, entran en contacto con la atmósfera terrestre chocando con las moléculas del aire, nitrógeno y oxígeno en su mayoría, a una velocidad de una décima parte la de la luz. El plasma, o estado de la materia compuesta de electrones e iones cargados, conduce la electricidad y parte de la energía liberada en esos "microimpactos" se libera en forma de luz de diversos colores, las auroras. Éstas se producen en la conocida como termosfera o ionosfera y se mantienen por encima de los 80 kilómetros porque por debajo de esa altitud la atmósfera es tan densa y los choques con las partículas cargadas ocurren tan frecuentemente que los átomos y moléculas están prácticamente en reposo. Por otro lado, las auroras no pueden estar más allá de los 400 kilómetros porque a esa altura la atmósfera es demasiado tenue -poco densa- para que las pocas colisiones que ocurren tengan un efecto significativo. En la ionosfera, el oxígeno (O) y el nitrógeno (N) atómicos y el nitrógeno molecular (N2) se encuentran en su nivel más bajo de energía, denominado nivel fundamental. El aporte de energía proporcionado por las partículas solares perturba a esos átomos y moléculas, llevándolos a estados excitados de energía. Al cabo de un tiempo muy pequeño, del orden de las millonésimas de segundo o incluso menos, estos átomos y moléculas vuelven a su nivel fundamental, devolviendo la energía en forma de fotones de luz. Se necesita miles de millones de estos saltos cuánticos para que podamos ver una aurora. Estamos siendo testigos de la evidencia visible del movimiento de las partículas a lo largo de las líneas del campo magnético de la Tierra.
Curiosamente, las luces de neón funcionan gracias al mismo principio físico.



Author Info

About

Sample text

Recent Posts

Featured Posts

Followers

Featured Posts

Follow us on facebook

Navigation-Menus (Do Not Edit Here!)

Find Us

Social Icons

Contact Us

Nombre

Correo electrónico *

Mensaje *

Formulario de contacto

Nombre

Correo electrónico *

Mensaje *

Contact

Nombre

Correo electrónico *

Mensaje *

Feature Label Area

SLIDE3

Popular Posts